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John-von-Neumann Institute for Computing, Forschungszentrum Ju¨lich, D-52425 Ju¨lich, Germany

~Received 12 August 2002; accepted 27 September 2002!

Two improved versions of the pruned-enriched-Rosenbluth method~PERM! are proposed and tested
on simple models of lattice heteropolymers. Both are found to outperform not only the previous
version of PERM, but also all other stochastic algorithms which have been employed on this
problem, except for the core directed chain growth method~CG! of Beutler and Dill. In nearly all
test cases they are faster in finding low-energy states, and in many cases they found new lowest
energy states missed in previous papers. The CG method is superior to our method in some cases,
but less efficient in others. On the other hand, the CG method uses heavily heuristics based on
presumptions about the hydrophobic core and does not give thermodynamic properties, while the
present method is a fully blind general purpose algorithm giving correct Boltzmann–Gibbs weights,
and can be applied in principle to any stochastic sampling problem. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1522710#

I. INTRODUCTION

Lattice polymers have been studied intensively to under-
stand phenomena like the globule–coil transition of poly-
mers, protein folding, etc. Protein folding~or, more precisely,
protein fold prediction!, one of the central problems of com-
putational biology, refers to the determination of the ground
state of protein molecules—which grosso modo is also its
native state—from their amino acid sequence. Due to rapid
advances in DNA analysis the number of known sequences
has increased enormously, but progress in understanding
their three-dimensional structure and their functions has
lagged behind owing to the difficulty of solving the folding
problem.

Simplifying the description of a protein by replacing
each amino acid by a simple point particle on a site of a
regular lattice implies of course a great reduction of com-
plexity, and one might wonder how much one can learn by
this for real proteins. But even if this simplification is too
strong, searching for the lowest energy states of such models
represents a paradigmatic example of combinatorial optimi-
zation. This will indeed be our main motivation: Finding
algorithms that explore efficiently the low-energy states of a
complicated energy landscape with many local minima. In
addition to finding the ground state we want these algorithms
also to sample excited states correctly, so that they provide a
complete thermodynamic description—though we shall re-
strict ourselves in this paper to presenting results on ground
states only.

A popular model used in these studies is the so-called HP
model1,2 where only two types of monomers, H~hydropho-
bic! and P~polar! ones, are considered. Hydrophobic mono-
mers tend to avoid water which they can only by mutually
attracting themselves. The polymer is modeled as a self-
avoiding chain on a regular~square or simple cubic! lattice
with repulsive or attractive interactions between neighboring
nonbonded monomers. Although also other interaction pa-
rameters have been used in the literature, almost all examples

treated in this paper use energieseHH521, eHP5ePP50.
The only other model studied here has also two types of
monomers, for simplicity also called H and P~although they
have identical hydrophobicities!, but with eHH5ePP

521, eHP50.3 Chain lengths considered in the literature
typically are betweenN530 andN5100. Shorter chains do
not present any problem, longer ones are too difficult.

A wide variety of computational strategies have been
employed to simulate and analyze these models, including
conventional~Metropolis! Monte Carlo schemes with vari-
ous types of moves,4–6 chain growth algorithms without3 and
with resampling7,8 ~see also Ref. 9!, genetic algorithms,11,12

parallel tempering,13 and generalizations thereof,14,15 an
‘‘evolutionary Monte Carlo’’ algorithm,10 and others.16 In ad-
dition, Yue and Dill17,18 also devised an exact branch-and-
bound algorithm specific for HP sequences on cubic lattices
which gives all low energy states by exact enumeration, and
typically works for N&70– 80. If the chain is too long, it
does not give wrong output but no output at all.

It is the purpose of the present letter to present two new
variants of the pruned-enriched Rosenbluth method~PERM!
~Ref. 19! and to apply them to lattice proteins. PERM is a
biased chain growth algorithm with resampling~‘‘population
control’’! with depth-first implementation. It has a certain
resemblance to genetic algorithms, except that the latter are
usually implemented breadth-first and do not allow to obtain
correct Gibbs–Boltzmann statistics.

The original version of PERM was used for lattice pro-
tein folding in Refs. 7 and 8 and did extremely well. With
one exception, it could find all known lowest energy configu-
rations for all sequences tested in Refs. 7 and 8, and found a
number of new lowest energy states. The one case where it
could not find the ground state in an unbiased and blind
search was a 64-mer designed in Ref. 11~see Fig. 1!, but this
is not surprising: Any chain growth algorithm should have
problems in finding this configuration, since it has to grow a
long arc which at first seems very unnatural and which is
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stabilized only much later. Indeed, at that time no other
Monte Carlo method had been able to find this state either.
But a very efficient algorithm, thecore-directed growth
method~CG! ~Ref. 9! was overlooked in Refs. 7 and 8. Thus
PERM was not tested on the most difficult example known at
that time, a 88-mer forming ab/a-barrel whose ground state
energy was known exactly. In the meantime, also two other
improved Monte Carlo algorithms were published.13,14 All
this motivated us to take up the problem again.

II. THE ALGORITHM

PERM is built on the old idea of Rosenbluth and Rosen-
bluth ~RR! ~Ref. 20! to use a biased growth algorithm for
polymers, where the bias is corrected by means of giving a
weight to each sample configuration. While the chain grows
by adding monomers, this weight~which also includes the
Boltzmann weight if the system is thermal! will fluctuate.
PERM suppresses these fluctuations by pruning configura-
tions with too low weight, and by ‘‘enriching’’ the sample
with copies of high-weight configurations.19 These copies are
made while the chain is growing, and continue to grow in-
dependently of each other. PERM has been applied success-
fully to a wide class of problems, including, e.g., theQ tran-
sition in homopolymers,19 trapping of random walkers on
absorbing lattices,21 and stretching collapsed polymers in a
poor solvent.22 It can be viewed as a special realization of a
‘‘go with the winners’’ strategy23 which indeed dates back to
the beginning of the Monte Carlo simulation era, when it was
called ‘‘Russian roulette and splitting.’’24 Among statisti-
cians, this approach is also known as sequential importance
sampling~SIS! with resampling.25

Pruning and enrichment were done in Refs. 7, 8, and 19
by choosing thresholdsWn

, andWn
. depending on the esti-

mate of the partition sums ofn-monomer chains. These
thresholds are continuously updated as the simulation
progresses. If the current weightWn of ann-monomer chain
is less thanWn

, , a random numberr is chosen uniformly in
@0,1#. If r ,1/2, the chain is discarded, otherwise it is kept
and its weight is doubled. Thus low-weight chains are pruned
with probability 1/2. Many alternatives to this simple choice
are discussed in Ref. 25, but we found that more sophisti-
cated strategies had little influence on the efficiency, and thus
we kept the above in the present work. The determination of

Wn
, and Wn

. will be discussed later. In principle we could
use the same as in Refs. 7 and 8, but we simplified it since
the new variants are more robust, and some of the tricks
employed in Refs. 7 and 8 are not needed.

On the contrary, we found that different strategies in
biasing and, most of all, in enrichment had a big effect, and
it is here the present variants differ from those in Refs. 7 and
8 There, high-weight configurations were simply cloned
~with the number of clones determined from the ratio of the
actual weight toWn

.), and the weight was uniformly shared
between the clones. For relatively high temperatures this is
very efficient,19 since each clone has so many possibilities to
continue that different clones very quickly become indepen-
dent from each other. This is no longer the case for very low
temperatures. There we found that clones often evolved in
the same direction, since one continuation has a much higher
Boltzmann weight than all others. Thus, cloning is no longer
efficient in creating configurational diversity, which was the
main reason why it was introduced.

The main modification made in the present paper is thus
that we no longer makeidentical clones. Rather, when we
have a configuration withn21 monomers, we first estimate
a predictedweight Wn

pred for the next step, and we count the
numberkfree of free sites where thenth monomer can be
placed. If Wn

pred.Wn
. and kfree.1, we choose 2<k<kfree

different sites among the free ones and continue with
k configurations which areforced to be different. Thus
we avoid the loss of diversity which limited the success
of old PERM. We tried several strategies for selecting
k which all gave similar results. Typically, we used
k5min$kfree,dWn

pred/Wn
.e%.

When selecting ak-tuple A5$a1 , . . . ,ak% of mutually
different continuationsa j with probability pA , the corre-
sponding weightsWn,a1

, . . . ,Wn,ak
are ~see Appendix!

Wn,a j
5

Wn21qa j
kfree

kS kfree

k D pA

. ~1!

Here, theimportance

qa j
5exp~2bEn,a j

! ~2!

of choicea j is the Boltzmann–Gibbs factor associated with
the energyEn,a j

of the newly placed monomer in the poten-
tial created by all previous monomers, and the terms in the
denominator of Eq.~1! arise from correcting bias and nor-
malization.

For the choice of continuations among thekfree candi-
dates, we used two different strategies:

~1! In the first, called nPERMss for ‘‘new PERM with
simple sampling,’’ we chose them randomly and uni-
formly, with the only restriction that they are mutually
different. Accordingly,Wn

pred5Wn21kfree,26 and

Wn,a5Wn21qakfree/k. ~3!

This has the advantage of simplicity, but it might at first
appear to be inefficient.A priori, we would expect that

FIG. 1. Left side: ground state configuration of anN564 chain in two-
dimensional from Ref. 11. Other states with the same energy differ in the
detailed folding of the tails in the interior, but have identical outer shapes.
Right side: when about 3/4 of the chain is grown, one has to pass through a
very unstable configuration which is stabilized only later, when the core is
finished.
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some bias in favor of continuations with high Boltzmann
weights or against continuations which run into dead
ends might be necessary for efficiency.

~2! In the second, called nPERMis for ‘‘new PERM with
importance sampling,’’ we did just that. For each pos-
sible placementaP@1,kfree# of thenth monomer we cal-
culated its energyEn,a and its numberkfree

(a) of free neigh-
bors, and used modified importances defined by

q̃a5~kfree
(a)11/2!exp~2bEn,a! ~4!

to choose among them. The predicted weight is now
Wn

pred5Wn21(aq̃a . The replacement ofqa by q̃a is
made since we anticipate that continuations with less
free neighbors will contribute less on the long run than
continuations with more free neighbors. This is similar
to ‘‘Markovian anticipation’’27 within the framework of
old PERM, where a bias different from the short-sighted
optimal importance sampling was found to be preferable.

The actual choice was made such that, for a givenk
~remember thatk was already fixed by the ratioWn

pred/Wn
.),

the variance of the weightsWn is minimal. Fork51 this
is standard importance sampling,pa5q̃a /(a8q̃a8 , and the
variance of Wn for fixed Wn21 would be zero if we
had not replaced qa by q̃a : Wn,a5Wn21qa /pa

5Wn21qa /q̃a(a8q̃a8 . For k.1, the probability to select a
tuple A5$a1 , . . . ,ak% is found to be

pA5

(
aPA

q̃a

(
A8

(
a8PA8

q̃a8

. ~5!

The corresponding weights are determined according to Eq.
~1!. The variance of the weight increaseWn,a /Wn21 ,
summed over allk continuations within the tuple, would
again be zero ifqa were not replaced byq̃a .

nPERMis is more time consuming than nPERMss, but it
should also be more efficient. While Eq.~5! with q̃a replaced
by qa would be optimal if the chain growth were a Markov
process, it is not guaranteed to be so in the actual~non-
Markovian! situation. We tried some alternatives forpA , but
none gave a clear improvement.

A noteworthy feature of both nPERMss and nPERMis is
that they cross over to complete enumeration whenWn

, and
Wn

. tend to zero. In this limit, all possible branches are fol-
lowed and none is pruned as long as its weight is not strictly
zero. In contrast to this, old PERM would have made expo-
nentially many copies of the same configuration. This sug-
gests already that we can be more lenient in choosingWn

,

andWn
. . For the first configuration hitting lengthn we used

Wn
,50 andWn

.5`, i.e., we neither pruned nor branched.
For the following configurations we usedWn

.

5CZn /Z0(cn /c0)2 and Wn
,50.2Wn

. . Here,cn is the total
number of configurations of lengthn already created during
the run,Zn is the partition sum estimated from these configu-
rations, andC is some positive number<1. The following
results were all obtained withC51, though substantial

speed-ups~up to a factor 2! could be obtained by choosingC
much smaller, typically as small as 10215– 10224. The latter
is easily understandable: with such smallC, the algorithm
performs essentially exact enumeration for short chains, giv-
ing thus maximal diversity, and becomes stochastic only later
when following all possible configurations would become
unfeasible. We do not quote the optimal results since they are
obtained only for narrow ranges ofC which depend on the
specific amino acid sequence, and finding them in each case
would require an extensive search.

Since both nPERMss and nPERMis turned out to be
much more efficient and robust than old PERM, we did not
use special tricks employed in Ref. 7 like growing chains
from the middle rather than one of the ends, or forbidding
contacts between polar monomers.

In the following, when we quote numbers of ground
state hits or CPU times between such hits, these are always
independenthits. In PERM we work at a fixed temperature
~no annealing!, and successive ‘‘tours’’19 are independent ex-
cept for the thresholdsWn

,,. which use partially the same
partition sum estimates. The actual numbers of~dependent!
hits are much larger.

For both versions, results are less sensitive to the precise
choice of temperature than they were for old PERM. As a
rule, optimal results were obtained at somewhat lower tem-
peratures, but in general all temperatures in the range 0.25
,T,0.35 gave good results for ground state search.

III. RESULTS

„a… We first tested the ten 48-mers from Ref. 4. As with
old PERM, we could reach lowest energy states for all of
them, but within much shorter CPU times. As seen from
Table I, nPERMis did slightly better than nPERMss, and
both were about one order of magnitude faster than the old
PERM. For all 10 chains we used the same temperature,
exp(1/T)518, although we could have optimized CPU times
by using different temperatures for each chain. In the follow-
ing we quote in general only results for nPERMis, but results
for nPERMss were nearly as good.

TABLE I. Performances for the three-dimensional binary~HP-! sequences
from Ref. 4.

Sequence~No.! 2Emin
a PERMb nPERMssc nPERMisd

1 32 6.9 0.66 0.63
2 34 40.5 4.79 3.89
3 34 100.2 3.94 1.99
4 33 284.0 19.51 13.45
5 32 74.7 6.88 5.08
6 32 59.2 9.48 6.60
7 32 144.7 7.65 5.37
8 31 26.6 2.92 2.17
9 34 1420.0 378.64 41.41

10 33 18.3 0.89 0.47

aGround state energies~Ref. 4!.
bCPU times~minutes! per independent ground state hit, on 167 MHz Sun
ULTRA I workstation; from Ref. 8.

cCPU times, same machine.
dCPU times, same machine.
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The CPU times for nPERMis in Table I are typically one
order of magnitude smaller than those in Ref. 9, except for
sequence #9 whose lowest energy was not hit in Ref. 9.
Since in Ref. 9 a SPARC 1machine was used which is
slower by a factor'10 than the 167 MHz Sun ULTRA I
used here, this means that our algorithms have comparable
speeds.

„b… Next we studied the two two-dimensional HP-
sequences of lengthN5100 of Ref. 5. They were originally
thought to have ground states fitting into a 10310 square
with energies244 and246,5 but in Ref. 8 configurations
fitting into this square were found with lower energies, and
moreover it was found that the configurations with lowest
energies (E5247 resp.E5249) did not fit into this square.
In the present work we studied only configurations of the
latter type.

For the second of these sequences, new lowest energy
configurations withE5250 were found later in Ref. 14,
within 50 h CPU time on a 500 MHz DEC 21164A. We now
hit this energy 7 times, with an average CPU time of 5.8 h on
a 667 MHz DEC 21264 between any two hits.

For the first sequence of Ref. 5 we now hit several hun-
dred times states withE5248, with '2.6 min CPU time
between successive hits. One of these configurations is
shown in Fig. 2.

„c… Several 2D HP-sequences were introduced in Ref.
11, where the authors tried to fold them using a genetic al-
gorithm. Except for the shortest chains they were not suc-
cessful, but putative ground states for all of them were found
in Refs. 8, 13, and 14. But for the longest of these chains
~with N564, see Fig. 1!, the ground state energyEmin5
242 was found in Ref. 8 only by means of special tricks
which amount to nonblind search. With blind search, the
lowest energy reached by PERM was239. We should stress
that PERM as used in Ref. 8 was blind for all cases except
this 64-mer, in contrast to wrong statements made in Ref. 10.

We now found putative ground states for all chains of
Ref. 11 with blind search. For the 64-mer the average CPU
time per hit was'30 h on the DEC 21264, which seems to
be roughly comparable to the CPU times needed in Refs. 13
and 14, but considerably slower than Ref. 9. As we already
said in the Introduction, this sequence is particularly difficult

for any growth algorithm, and the fact that we now found it
easily is particularly noteworthy.

On the other hand, nPERMis was much faster than Ref.
9 for the sequence withN560 of Ref. 11. It needed'10 s
on the DEC 21264 to hitEmin5236, and'0.1 s to hitE
5235. In contrast,E5236 was never hit in Ref. 9, while it
took 97 min to hitE5235.

„d… An 85-mer 2D HP sequence was given in Ref. 28,
where it was claimed to haveEmin5252. Using a genetic
algorithm, the authors could find only conformations with
E>247. In Ref. 10, using a newly developedevolutionary
Monte Carlo~EMC! method, the authors found the putative
ground state when assuming large parts of its known struc-
ture as constraints. This amounts of course to nonblind
search. Without these constraints, the putative ground state
was not hit in Ref. 10 either, although the authors claimed
their algorithm to be more efficient than all previous ones.

Both with nPERMss and with nPERMis we easily found
states withE5252, but we also found many conformations
with E5253. For nPERMis at exp(1/T)590 it took '10
min CPU time between successive hits on the Sun ULTRA 1.
One of those conformations is shown in Fig. 3.

„e… As two easy cases we studied the two longest se-
quences from Ref. 12, since we can compare there with CPU
times given in Ref. 12 for three versions of a supposedly
very efficient genetic algorithm. These 2D HP sequences
with lengthsN533 and 48 have ground state energies214
and223, respectively. In Ref. 12, the most efficient version
needed on average'45 min CPU~on an unspecified ma-
chine! to reach a ground state of the 33-mer. For the 48-mer
only energy222 could be reached, within'2.5 h per hit.
Using exp(1/T)540, it took the Sun ULTRA 1 just 0.4 s to

FIG. 2. Typical configuration withE5248 of the first sequence of Ref. 5.

FIG. 3. New putative ground state configuration withE5253 of the 2D
N585 chain taken from Refs. 10 and 28.

TABLE II. Performance for the three-dimensional HP sequences from Ref.
30.

N Emin
a Emin

b exp(1/T) CPU timec

58 242 244 30 0.19
103 249 254 60 3.12
124 258 271 90 12.3
136 265 280 120 110

aLowest energies found in Ref. 16.
bPresent work, using nPERMis.
cCPU times~hours! per independent lowest state hit, on 667 MHz DEC
ALPHA 21264.
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hit one ground state of the 33-mer, 7 to hitE5222 for the
48-mer, and 16 min to hit a ground state of the 48-mer. Thus
the present algorithm is roughly 1000 times faster than that
of Ref. 12.

„f… Four three-dimensional~3D! HP sequences withN
558, 103, 124, and 136 were proposed in Refs. 29 and 30 as
models for actual proteins or protein fragments. Low energy
states for these sequences were searched in Ref. 16 using a
newly developed and supposedly very efficient algorithm.
The energies reached in Ref. 16 wereE5242, 249,258,
and265, respectively. With nPERMis, we now found lower
energy states after only few minutes CPU time, for all four
chains. For the longer ones, the true ground state energies are
indeedmuchlower than those found in Ref. 16, see Table II.
Examples of the putative ground state configurations are
shown in Figs. 4–7.

Note the very low temperatures needed to fold the very
longest chains in an optimal time. If we would be interested
in excited states, higher temperatures would be better. For
instance, to findE5266 for the 136-mer~which is one unit
below the lowest energy reached in Ref. 16!, it took just 2.7
s/hit on the DEC 21264 when using exp(1/T)540.

„g… Several 3D HP sequences were studied in Ref. 18,
where also theirexactground state energies were calculated

using the ‘‘constrained hydrophobic core construction’’
~CHCC! which is essentially an exact enumeration method
tailored specifically to HP sequences on the cubic lattice.
According to Ref. 18, CHCC can be used to find all exact
ground state configurations for chains of lengthN'70– 88,
depending on their degeneracies.

The longest chains given explicitly in Ref. 18 together
with their native configurations are a four helix bundle with
N564 andEmin5256, and a chain withN567 folding into
a configuration resembling ana/b barrel with Emin5256,
too. Both have low degeneracy.

Finding ground states for the 64-mer was no problem for
nPERMis. For exp(1/T)550, the DEC ALPHA 21264 ma-
chine needed on average 26.8 min CPU time to hit one of
them. Things are a bit more interesting for the 67-mer. One
of its ground states is shown in Fig. 8. Assume we want to let
this grow, starting from theb sheet end~monomer #67!.
Then we see that we always can form immediately stabiliz-
ing H–H bonds, and that we would be never seriously misled
if we would place monomers greedily, at positions where
they have low energies. Indeed, starting from this end we had
no problems with nPERMis: It took on average 67 min to hit
a native state on the DEC ALPHA 21264.

On the other hand, when starting with monomer #1, we
were unsuccessful and the lowest energy reached wasE
5253, even after much longer CPU times. This is easily
understood from Fig. 8; starting from this end we have to go

FIG. 4. Configuration withE5244 of theN558 HP sequence modeling
protein BPTI from Refs. 16 and 29.

FIG. 5. Configuration withE5254 of theN5103 HP sequence modeling
cytochrome c from Refs. 16 and 30.

FIG. 6. Configuration withE5271 of theN5124 HP sequence modeling
ribonuclease A from Refs. 16 and 30.

FIG. 7. Configuration withE5280 of theN5136 HP sequence modeling
a staphylococcal nuclease fragment, from Refs. 16 and 30.
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repeatedly into directions which seem very unnatural at first
sight, and which get stabilized much later.

Notice that the difference between the two growth direc-
tions is not that there is a folding nucleus when starting from
#67, and no folding nucleus when starting from #1. After the
first quarter is built up, both give thesamea/b pair. Build-
ing this first quarter is no problem even when starting from
#1, at least when we useC!1 ~in which case it is built
essentially by complete enumeration!. Thus the existence of
a nucleus in the traditional sense is not sufficient. Instead it is
crucial that further growth from this nucleus does not lead
into false minima of the energy landscape.

„h… Next we studied the two-species 80-mer with inter-
actions~21,0,21! that was introduced in Ref. 3. It was con-
structed in Ref. 3 such as to fold into a four helix bundle
with E5295, but two configurations withE5298 were
found in Ref. 7 which essentially areb sheet dominated.
These configurations were hit on average once every 80 h on
a 167 MHz Sun ULTRA 1. Later they were also found in
Ref. 15, with similar CPU time as far as we can tell. With
nPERMis we needed only 5.3 h/hit, on the same Sun ULTRA
1 @and for 8<exp(1/T)<12].

„i… Finally we also studied the 3D HP sequence of length
88 given in Ref. 9. As shown there, it folds into an irregular
b/a-barrel with Emin5272. This is the only chain whose
ground state we couldnot find by our method, instead we

only reachedE5269. This is in contrast to the CG method
which could find the lowest energy easily.9 The difficulties of
PERM with this sequence are easily understood by looking
at one of the ground states, see Fig. 9. The nucleus of the
hydrophobic core is formed by amino acids #36–53. Before
its formation, a growth algorithm starting at either end has to
form very unstable and seemingly unnatural structures which
are stabilized only by this nucleus, a situation similar to that
in Fig. 1. In order to fold also this chain, we would have
either to start from the middle of the chain~as done in Ref. 8
for some sequences! or use some other heuristics which help
formation of the hydrophobic core. Since we wanted our
algorithm to be as general and ‘‘blind’’ as possible, we did
not incorporate such tricks. The CG method, in contrast, is
based on constructing an estimate of the hydrophobic core
and the hydrophilic shell, and letting the chain grow to fill
both in an optimal way, using a heuristic cost function.

Before leaving this section we should say that for all
chains studied in this paper we found also states withE
5Emin11,Emin12, . . . . Thus none of the sequences
showed an energy gap above the~putative or exact! ground
state. If such a gap is indeed typical for good folders, then
none of the above sequences should be considered as good
folders.

FIG. 8. Ground state configuration (E5256) of theN567 HP sequence
given in Ref. 18. It forms a structure resembling ana/b barrel. When
starting at monomer #67 (b sheet end!, nPERMis could find it easily, but
not when starting from monomer #1.

FIG. 9. Ground state configuration (E5272) of theN588 HP sequence
given in Ref. 9. It also forms a structure resembling ana/b barrel, with the
core ~the 4b strings! built from the central part of the chain. Without this
core being already present, folding from neither end is easy.

TABLE III. Newly found lowest energy states for binary sequences with interactionse5(eHH ,eHP,ePP).

old Emin

N d e Sequence newEmin Ref.

100 2 2~1,0,0! P6HPH2P5H3PH5PH2P2~P2H2!2PH5PH10PH2PH7P11H7P2HPH3P6HPH2 247 7
248

85 2 2~1,0,0! H4P4H12P6H12P3H12P3H12P3HP2H2P2H2P2HPH 252 10
253

58 3 2~1,0,0! PHPH3PH3P2H2PHPH2PH3PHPHPH2P2H3P2HPHP4HP2HP2H2P2HP2H 242 16
244

103 3 2~1,0,0! P2H2P5H2P2H2PHP2HP7HP3H2PH2P6HP2HPHP2HP5H3P4H2PH2P5H2P4 249 16
H4PHP8H5P2HP2 254

124 3 2~1,0,0! P3H3PHP4HP5H2P4H2P2H2P4HP4HP2HP2H2P3H2PHPH3P4H3P6H2P2HP2 258 16
HPHP2HP7HP2H3P4HP3H5P4H2PHPHPHPH 271

136 3 2~1,0,0! HP5HP4HPH2PH2P4HPH3P4HPHPH4P11HP2HP3HPH2P3H2P2HP2HPHPHP8H 265 16
P3H6P3H2P2H3P3H2PH5P9HP4HPHP4 280
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A list containing all sequences for which we found new
lowest energy configurations is given in Table III.

IV. DISCUSSION

In the present paper we presented two new versions of
PERM which is a depth-first implementation of the ‘‘go-
with-the-winners’’ strategy~or sequential importance sam-
pling with resampling!. The main improvement is that we
now do not makeidentical clonesof high weight ~partial!
configurations, but we branch such that each continuation is
forced to be different. We do not expect this to have much
influence for systems at high temperatures, but as we
showed, it leads to substantial improvement at very low tem-
peratures. The two versions differ in using simple sampling
~nPERMss! resp. importance sampling~nPERMis! when
choosing among possible branches.

Although the method could be used for a much wider
range of applications~see Ref. 31 for applications of PERM!,
we applied it here only to lattice heteropolymers with two
types of monomers. These represent toy models of proteins,
and we hope that our results will also foster applications to
more realistic protein models. We showed only results for
lowest energy configurations, but we should stress that
PERM and its new variants are not only optimization algo-
rithms. They also give information on the full thermody-
namic behavior. We skipped this here since finding ground
states is the most difficult problem in general, and sampling
excited states is easy compared to it.

Comparing our results to previous work, we see that we
found the known lowest energy states inall cases but one.
Moreover, whenever we could compare with previous CPU
times, the comparison was favorable for our new algorithms,
except for the CG method of Beutler and Dill.9 But we
should stress that the latter is very specific to HP chains, uses
strong heuristics regarding the formation of a hydrophobic
core, and does not give correct Boltzmann weights for ex-
cited states. All that is not true for our method. In general
nPERMis did slightly better than nPERMss, although the
difference was much less thana priori expected.

In principle, essentially the same algorithms can also be
used for off-lattice systems. This was already true for the
original version of PERM which performed well for
Lennard-Jones polymers at temperatures around the
Q-transition32, but rather badly for collapsed heteropolymers
at temperatures much below theQ temperature.33 Work is
presently in progress to see whether the new versions of
PERM perform better, and whether they can be used effi-
ciently to study protein folding with realistic interactions.
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APPENDIX: IMPORTANCE SAMPLING

In this Appendix we shall collect some basic facts about
random sampling, whentuplesof instances are selected in-
stead of individual instances. The discussion will be very

general. On the other hand, we willnot deal with problems
specific tosequentialsampling, i.e., we will assume that we
sample only for the choice of a single item~e.g., for the
placement of a single monomer!.

Our central aim is thus to estimate a partition sum,

Z5(
i 51

N

qi , ~A1!

where theimportances qi might, e.g., be Boltzmann–Gibbs
factors, and whereN is assumed to be finite~the generaliza-
tion to infiniteN and to integrals instead of sums is straight-
forward!. A conventional Monte Carlo~MC! procedure con-
sists in choosing ‘‘instances’’i (a), a51,2, . . . with
probabilitiespi (a) such that each instance gives an unbiased
estimate Ẑ1(a) ~the index ‘‘1’’ will be explained in a
minute!. Thus, givenM such instances and lettingM tend to
infinity, we have

Z5 lim
M→`

1

M (
a51

M

Ẑ1~a!. ~A2!

One easily sees that

Ẑ1~a!5
qi ~a!

pi ~a!
~A3!

does the job. Indeed,

lim
M→`

1

M (
a51

M
qi ~a!

pi ~a!
5(

i 51

N

pi

qi

pi
5Z. ~A4!

At the same time we can also estimate the variance ofẐ1 .
We have

Var Ẑ15^Ẑ1
2&2^Ẑ1&

25(
i 51

N

pi S qi

pi
D 2

2Z25(
i 51

N qi
2

pi
2Z2.

Up to now everything is correct for any choice of the prob-
abilities pi . They get fixed, e.g., bypi51/N ~uniform sam-
pling! or by demanding VarẐ1 to be minimal, under the
constraint( i pi51. This simple variational problem gives
pi

opt}qi which is known asimportance sampling. For perfect
importance sampling one finds furthermore that VarẐ150.

Let us now assume that we select each time not one
instance butK instances, all of which are different. This re-
quires of courseK<N. Moreover we will assumeK,N,
since otherwise this would amount to an exact summation of
Z. An advantage of such a strategy should be that we obtain
a more widely and uniformly spread sample. WhenN@K,
this should not have a big effect, but in our applications both
N andK are small and the effect is substantial.

Thus each event consists in choosing aK-tuple
$ i 1 ,i 2 , . . . ,i K%, with the i j mutually different, from some
probability distributionpi 1 ,i 2 , . . . ,i K

. We consider tuples re-
lated by permutations as identical, i.e., without loss of gen-
erality we can assume thati 1, i 2,•••, i K . Each choicea
of a tuple$ i 1(a),i 2(a), . . . ,i K(a)% will lead to an estimate
ẐK(a). Instead of Eq.~A3! we have now
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ẐK~a!5
N(k51

K qi k(a)

KS N
K D pi 1(a) . . . i K(a)

, ~A5!

since one verifies easily that^ẐK(a)&5Z.
The variance ofẐK(a) is calculated just like that of

Ẑ1(a),

Var ẐK5S N21
K21D 22

(
i 1, . . . , i K

~(k51
K qi k

!2

pi 1 . . . i K

2Z2. ~A6!

Importance sampling is again obtained by minimizing it with
respect topi 1••• i K

, giving the result

pi 1 . . . i K
opt 5S N21

K21D (k51
K qi k

( j 51
N qj

. ~A7!

The variance ofẐK vanishes again for this choice.
On the other hand, for uniform~or ‘‘simple’’ ! sampling,

with

pi 1••• i K
ss 5S N

K D 21

, ~A8!

we obtain

Var ẐK5
~N2K !N2

K~N21!
Var q ~simple sampling!. ~A9!

For K51 this is the obvious result VarẐ15N2Var q, while
for K5N it gives Var ẐN50 as it should. For general 1
,K,N the factor 1/K is trivial and results from the fact that
each event corresponds toK instances, while the factor (N
2K)/(N21) gives the nontrivial improvement due to the
fact that onlydifferent instances are chosen in each event.

Finally, when using Eq.~A5! for sequential sampling,
one has to attribute weights to each individual instance, in-
stead of giving a weight only to the entire tuple. The obvious
solution is

Wi k(a)5
qi k(a)N

KS N
K D pi 1(a) . . . i K(a)

. ~A10!
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